Terralegs: Powered Quadcopter Landing Gear for Uneven
Terrain

Aditya Vishwa, Jonas Plichta, Joe Domke, Angelica Lewis
MECENG 102B: Mechatronics Design, Fall 2025

Opportunity

Quadcopter landings are vulnerable to tip-over, rotor strike, and instability when operating on
uneven and unpredictable terrain. Current drones, both hobby and commercial, use fixed landing gear
because of the inherent light weight, low cost, and simple integration. However, rigid landing gear
requires flat, obstacle-free surfaces and provides zero ability to adapt to real-world conditions. TerraLegs
addresses this limitation by providing a powered, self-leveling landing gear system that allows
guadcopters to land safely and reliably in complex terrain conditions, reducing operational risk and
increasing potential deployment area. The system is fully modular, enabling it to be mounted to any
existing frames with just a few bolts and a power lead.

High-Level Strategy

Terralegs is a powered landing-gear system that uses a single 12V motor to control 4 legs
simultaneously via a worm gear based gearbox that drives a cam and carriage mechanism. Three distinct
cam positions, 0°, 90° and 180° correspond to stowed, free-moving, and clamped states respectively. At
0°, the carriage presses levers on the leg hubs to stow the legs near horizontal for flight. At 90°, the
carriage is neutral, allowing the legs to passively settle to terrain in landing. At 180°, ratchet style teeth
on the carriage mesh with similar teeth on each leg hub, locking legs in fixed positions without
continuous power.

An ESP32 Feather V2 runs an event-driven state machine using an internal limit switch for
homing and a downward-facing LiDaR sensor to determine several state transitions. Power to the ESP32
is provided by a small battery and to the motor by the main drone battery.

This system was designed to enable quadcopter landings on uneven terrain, intended to
accommodate at least £5 cm terrain variation, complete deployment and locking in <10 s, maintain
drone tilt within £5°, require no holding power when clamped, and remain under 750g. The realized
system achieved passive adaptation to +7.25 cm height variation at 15cm hover, zero holding power
when clamped, and had a final mass <650g. The final landing sequence required ~6.1 s to complete,
with opportunity to be reduced further, however was unable to stay within the desired tilt limits in all
terrain conditions. The discrete locking teeth constrain each leg to 15° increments, resulting in a possible
clamping error up to £7.5° per leg. This quantization effect is greater when clamping nearer to
horizontal, where small angular errors produce larger positional changes. Despite this limitation,
even-ground landing tests with 15 + 2 cm never resulted in a final platform tilt greater than 5°.

Fully Assembled, Integrated Design

E.
Flange bearing

) A W . : x . N
r Wl enca

‘Shoulder bolt (shaft)

Functional-Critical Decisions and Calculations

These calculations were done using skills i 7 > 1«0,

from ME C85, introduction to solid l D I

mechanics, as well as some empirical

engineering assumptions. A b ¢

Fint

Required Motor Torque:
The maximum required torque occurs when retracting the legs, as when the legs are locked during
landing, most of the force is taken by the ratchet-gear-like mechanism.

Max torque required to retract 2 legs (each cam retracts 2 legs, D1 = 0.15m, m = 0.0238kg):

TZ—legs: F % D1 =m*a *D1 * sin(90) * 2 = 0.0238 *9.81 *15* 1 * 2 = 0.0350217 Nm
Required force to lift 2 legs (D2 = 0.01m):

T2—legs = 0.0350217 = F X D2 = F *0.01 * sin(90) - FZ—legs = 7.00434N

Combined required force 2-carriages must push down with (carriageMass = 0.0125kg):

2% F2—legs — carriageMass * 9.81 * 2 = 2 * 7.00434N — 0.0125 * 9.81 * 2 = 13.76343N

Conservative estimate of total required motor torque (camRadius = 0.0155m):
= F X camRadius = 13.76343 * 0.0155 * sin(90) = 0.21 N*m

motor

Bearing Load and Plate Stress:

Due to cam reaction forces being symmetric le—r?{—*l ety 1y

about the motor shaft, the system was modeled

as a simply supported beam, resulting in a max

bearing load of 13.76343/2 = 6.9N per A ¢ c \ 0 Ny i Deurry
Mobey

bearing as calculated above. .. "W
Calculation of bearing plate stress was done using a pin-in-hole stress approximation and assuming a
uniform PLA plate (F = force, D = hole/bearing diameter, T = hole/bearing thickness, 60/360 = contact
arc):

~F/(D*T * 60/360)=6.9/(10 * 10 ° * 3 * 10> * 60/360) ~ 0.73 MPa.

o
bearing

The bearing plate stress was well below the strength of PLA (~ 50 MPa), though we used a uniform
composition in our assumptions. Given the high factor of safety there was no concern about material
strengths for the expected loadings, supported by no visible damage in any stage of project testing.

Motor Decision:
Due to long lead times, the motor was selected before the final design was complete. Early concepts
assumed longer legs printed from a denser material, requiring a higher motor torque, and sizing was

intended to be conservative due to dynamic loads and friction not being explicitly modeled in our
calculations. With this in mind, we ordered a motor with a stall torque of 2.5 N*m. As a result of the
changes in leg design, we had an increased static factor of safety (~12), ensuring reliable operation but
leaving room for improvement in speed and weight.

Circuit and State Transition Diagrams

T

T T T T

—io 330
T
7s
10 Kohm, A
ut
L298N Duat H-Bridge Motor Driver

2
Enn 0C Molor Epcoder M
ourt

bkE ol

EE

urz

e
ours - 0C Motor
ourh -

ME 1028 Mechatronics Design
Sheet

Files Leg.schematic.cicad.

Title: Terralegs Circult Diagram

Sie 40 T bate: December 12, 2075 T Rew

KiCad EDA 0.0.6 ‘\d 1/1
T i

HomeSubstate

[

HomeSubstate

STHOMING.

HS_DELAY

ST.DEPLOVING

LEDia fulyon

Uit swieh s

LED binks fast,
Stop mter
HS_FIND_FIRST
_cuck
(searchfoc frst
mechanica imt)

HS_STOP_SETTLE
(dechanical sting

boforo ial postion)

Reflection

TerralLegs functioned reliably as an integrated prototype, successfully demonstrating a single-actuator

landing gear capable of adapting to adverse terrain. An early decision to prioritize integration allowed for
necessary debugging, but due to motor lead-times, our motor was sized on a longer leg design, which
was later resized to fit on-hand Bambu P1S build volume. This critical design change reduced torque

demand, resulting in an oversized motor limiting potential weight reduction and speed maximization.
Future project iterations would include a higher speed motor and machined leg hubs with higher
resolution teeth to address quantization error and improve repeatability in higher variability terrain.

Appendix A: Bill of Materials

Part name Vendor Quantity Package price |Notes
Carriage top 3D printed 2 $0.00|PLA
Carriage left spacer 3D printed 2 $0.00|PLA
Carriage right spacer 3D printed 2 $0.00|PLA
Carriage bottom 3D printed 2 $0.00|PLA
Bottom plate 3D printed 1 $0.00|PLA
Top plate 3D printed 1 $0.00|PLA
Motor mount left 3D printed 1 $0.00|PLA
Motor mount right 3D printed 1 $0.00|PLA
Bearing plate 3D printed 2 $0.00|PLA
Cam 3D printed 2 $0.00|PLA
Flanged bearing Amazon 2 $9.69
Leg 3D printed 4 $0.00|PLA
Leg mount left 3D printed 4 $0.00|PLA
Leg mount right 3D printed 4 $0.00|PLA
Leg spacer 3D printed 4 $0.00| PLA
10mm M5 screw - top plate to drone On hand 4 $0.00
6mm bore 10mm sleeve bearing - leg hub | Amazon 4 $11.89
6mm bore 4mm sleeve bearing - carriage |Amazon 4 $0.00| Assorted pack with 10mm sleeve bearings
6mm shoulder bolt - carriage shaft Amazon 4 $8.99
M5 6mm shaft shoulder screw - Leg hub |Amazon 4 $9.49
M5 hex nut On hand 8 $0.00
Shaft collar Amazon 2 $8.99
M6 washer On hand 4 $0.00
M3 nut On hand 4 $0.00
M3 screw - carriage On hand E $0.00
M3 screw - motor mount On hand 4 $0.00
12V DC motor dual shaft with encoder Robotshop 1 $12.63
ESP32 Feather V2 On hand 1 $0.00
L298N driver On hand 1 $0.00
Lidar rangefinder On hand 1 $0.00
Green LED On hand 1 $0.00
Limit switch On hand 1 $0.00
Micro pushbutton On hand 1 $0.00
220 Ohm resistor On hand 1 $0.00
10 KOhm resistor On hand 4 $0.00
500 mAh Li-Po battery On hand 1 $0.00
Slide switch On hand 1 $0.00
Surface mount JST connector On hand 10 $0.00
Total $61.68

Appendix B: CAD

-
=
=
P |

(=\

e s

Figure B1: Cam at 0° position, pressing down on carriage and holding legs in stowed (horizontal) position.
Support pieces hidden for visibility.

!‘i 1 N 1

7Y TN
-l l-l_l-lkl-

Figure B2. Cam at 90° position, legs free to move under their own weight. Support pieces hidden for
visibility.

a0

\

Figure B3. Cam at 180° position, pressing up on the carriage and locking legs in a clamped position.
Support pieces hidden for visibility.

Figure B4: Terralegs CAD assembly.

Appendix C: Code

/ff FINAL CODE ////
#include <Arduino.h>
#include <HardwareSerial.h>
#include “esp_timer.h"

/f Motor driver

constexpr int PIN_MOTOR_ENA
constexpr imt PIN_MOTOR_IN1
constexpr int PIN_MOTOR_INZ

26; f/ Blue wire from driver
33; // Purple wire from driver
27; // Grey wire from driver

// Encoder
constexpr int PIN_ENC_A = 5; // Green wire from encoder
constexpr int PIN_ENC_B = 19; // Yellow wire from encoder

/{ Range Finder

constexpr int PIN_LIDAR_RX = 34; // Green wire from range finder

constexpr imt PIN_LIDAR_TX = 13; // White wire from range finder (not used, cut off)
constexpr uwint32_t LIDAR_BAUD = 115288 ;

HardwareSerial LidarSerial(2);

/f User input + LED
constexpr int PIN_BTN = 39; // User controller button input
constexpr imt PIN_LED_GREEN = 25; // User controller indicator LED

/f Limit switches

constexpr int PIN_LIM1 = 15; // Not used
constexpr int PIN_LIM2Z = 32; // Not used
constexpr inmt PIN_LIM3 = 14; // Used for homing
constexpr int PIN_LIM4 = 37; // Not used

/f Encoder direction fix
constexpr bool ENC_INVERT = true:

/f Fixed measured counts/output-rev
constexpr float COUNTS_PER_OUTPUT_REV = 42754.8f; // Encoder count for & RPM gear box. 66 RPM gear box
count was 3834.8

/7 PWM tuning

constexpr imt PIM_MAX
constexpr imt PWM_MIN_MOVE
constexpr imt PWM_MIN_LOAD
constexpr float ERR_LOAD_DEG
constexpr float DEG_TOL

255;

158; // no-load

175; /! loaded

25.8f; // above this error assume loaded move
1.8f; // deadband around target [deg]

/{ Height thresholds
constexpr uint16_t HEIGHT_OK_CM = 15; /f near ground / ready
constexpr uint16_t HEIGHT_TAKEOFF_CM = 78; // takeoff detection (8.7 m)

// Homing constants
constexpr int HOMING_PWM = 288; // Homing PWM

// CHANGED timing to background timer to reflect functionality test feedback
// timing previously done with millis()/delay(), now driven from a fixed-rate esp_timer tick

constexpr uint32_t CTRL_HZ = 188; /7 188 Hz control update
constexpr float CTRL_DT = 1.8f / (float)CTRL_HZ;
constexpr int64_t CTRL_PERIOD_US = 1888888LL f CTRL_HZ; // 18,888 us

volatile uint32_t ctrlTicks = 8;
esp_timer_handle_t ctrlTimer = nullptr;

void ctrl_timer_cb(void*) {
ctrlTicks++;

}

static inline wint32_t nowTick() { returm ctrlTicks; }
static inline wint32_t msToTicks(uint32_t ms) { return (ms + 9) / 18; } // 18 ms per tick @ 188 Hz

fI e=eeeecccccccccaa Encoder ===--eccscccecee
volatile long encCount = 8;

// Encoder A ISR

void IRAM_ATTR isr_encA() {
bool a = digitalRead{PIN_ENC_A);
bool b = digitalRead{PIN_ENC_B);

long step;

if (a == b) {
step = +1;
} else {
step = -1;
}

if (ENMC_INVERT) {
encCount -= step;
} else {
encCount += step;

}

/f Encoder B ISR

void IRAM_ATTR isr_encB() {
bool a = digitalRead{PIN_ENC_A);
bool b = digitalRead(PIN_ENC_B);

long step;

if (a '= b) {
step = +1;
} else {
step = -1;
}

if (ENC_INVERT) {
encCount -= step;
} else {
encCount += step;

}

inline float countsToDeg(long c) { return (c * 368.8f) / COUNTS_PER_OUTPUT_REY; }
inline long degToCounts(float d) { return lroundf(d * COUNTS_PER_QOUTPUT_REV / 368.8f); }

static inline long readEncAtomic() {
nolnterrupts();
long ¢ = encCount;
interrupts();
return c;

ff =memmemcescenan- Lidar ======sseccccea-
static const uintB_t HDR = @x59;

uint16_t tf_dist = 65535,

bool nearGround = false;

bool takeoffHigh = false;

vold lidar_poll() {
static uint8_t buf[9];
while (LidarSerial.available() == 9) {
if (LidarSerial.peek() '= HDR) { LidarSerial.read(); continue; }
LidarSerial.readBytes(buf, 9);
if (buf[@]==HDR && buf[1]==HDR) {
uintB_t sum=8; for (int i=8;i<8;i++) sum+=buf[i];
if ((sum&BxFF)'=buf[8]) continue;
uint16_t d = (uint16_t)buf[2] | ((uint16_t)buf[3]<<B);
tf_dist = d;

nearGround = (d <= HEIGHT_OK_CM);
takeoffHigh = (d »>= HEIGHT_TAKEOFF_CM) ;

e ISR flags ---------—-------
volatile bool btnEdge = false; //initialize
volatile bool lim3Edge = false;

void IRAM_ATTR isr_btn() { btnEdge true; } // user button flag
void IRAM_ATTR isr_lim3() { lim3Edge = true; } // homing sequence limit switch flag

// Button debounce
const uint32_t BTN_DEBOUNMCE_TICKS = msToTicks(188);
const uint32_t LIM_DEBOUNCE_TICKS = msToTicks(88);

bool checkBtnPressed() {

static wint32_t last = 8;

if (!'btnEdge) return false;

btnEdge = false;

wint32_t t = nowTick()};

if (digitalRead(PIN_BTN) == HIGH && (t - last) > BTN_DEBOUNCE_TICKS) {
last = t;
return true;

}

return false;

[/ active-LOW limit switch

bool checkLim3Pressed() {
static uint32_t last = @;
static bool prevPressed = false;

bool pressed = (digitalRead(PIN_LIM3) == LOW);
bool newPress = pressed && !prevPressed;
prevPressed = pressed;

/f Button debounce

uint32_t t = nowTick();

if (newPress && (t - last) > LIM_DEBOUNCE_TICKS) {
last = t;
return true;

}

return false;

// ==mmsssczszzza== Motor drivers ======ssssz=z==z==

inline void motorStop() {
digitalWrite(PIN_MOTOR_IN1, LOW);
digitalWrite(PIN_MOTOR_IN2, LOW);
analogWrite(PIN_MOTOR_ENA, 8);

H

inline volid motorFwd(int pwm) {
digitalWrite(PIN_MOTOR_IN1, HIGH);
digitalWrite(PIN_MOTOR_INZ, LOW);
analogWrite(PIN_MOTOR_ENA, pwm);

}

inline void motorRev(int pwm) {
digitalWrite(PIN_MOTOR_IN1, LOW);
digitalWrite(PIN_MOTOR_INZ, HIGH):
analogWrite(PIN_MOTOR_ENA, pwm);

}

//CONTROL SECTION CHANGED TO REFLECT FUNCTIONALITY TEST FEEDBACK -> now cascaded
// Position loop generates velocity command, velocity loop generates PWM command
float targetDeg = ©.87;

constexpr float KP_STARTUP_SCALE = 8.5f7; // slower during 8-=188 clamp sweep
float kp_scale = 1.8f; // scaled during startup sweep

long encPrev = 8;
float velDegPerSec = 8.8f;

constexpr float KP_POS = 5.8f;
constexpr float VEL_CMD_MAX = 88.8f;

constexpr float KP_VEL = 2.8f;
constexpr float KI_VEL = 5.8f;
constexpr float I_VEL_CLAMP = 868.8f;
float vell = B.8f;

void resetController() {
encPrev = readEncAtomic();
vell = 8.8f;

int minPwmForErr(float errDeg) {

return (fabsf(errDeg) = ERR_LOAD_DEG) ? PWM_MIN_LOAD :

}

void controlStep_cascaded() {
long ¢ = readEncAtomic();
long dc = ¢ - encPrev;
encPrev = ¢c;

float pos = countsToDeg(c);

float ddeg = countsToDeg(dc);

xelDsafersgs = ddeg / CTRLDT]

float err = targetDeg - pos;

if (fabsf(err) <= DEG_TOL) {
motorStop() ;
vell = 8.8f;
return;

float velCmd = (KP_POS * kp_scale) * err;

velCmd = constrain(velCmd, -VEL_CMD_MAX, VEL_CMD_MAX);

float velErr = velCmd - velDegPerSec;

vell += wvelErr * CTRL_DT;
vell = constrain(vell, -I_VEL_CLAMP, I_VEL_CLAMP);

float u = KP_VEL * velErr + KI_VEL * vell;
int pwm = (int)fabsf(u):
int pwmMin = minPwmForErr(err);

if (pwm < pwmMin) pwm = pwmMin;
pwm = constrain(pwm, 8, PWM_MAX);

if (u » B8) motorFwd({pwm);
else motorRev(pwm) ;

// hold check only for state transitions
const uint32_t HOLD_TICKS = msToTicks(258);
uint32_t holdStartTick = 8;

bool atTargetHold() {
float pos = countsToDeg(encCount);
float err = targetDeg - pos;
uint32_t t = nowTick();

if (fabsf(err) <= DEG_TOL) {

if (holdStartTick == 8) holdStartTick = t;

if (t - holdStartTick »= HOLD_TICKS) return true;
} else {

heldsracslisk = o;

PWM_MIN_MOVE;

11

}

return false;

F B et LEDS ---===-======-=-
const uint32_t LED_FAST_TICKS = msToTicks(128);
const uint32_t LED_SLOW_TICKS = msToTicks(588);

void ledsBlinkFast() { digitalWrite(PIN_LED_GREEN,
vold ledsBlinkSlow() { digitalWrite(PIN_LED_GREEN,

{(nowTick() /LED_FAST_TICKS)&1)); }
((nowTick()/LED_SLOW_TICKS)&1)); }

void ledsOn() { digitalWrite(PIN_LED_GREEN, HIGH); }
void ledsOff() { digitalWrite(PIN_LED_GREEN, LOW); }
WA P TR
enum HomeSubstate {
HS_START,
HS_DELAY,
HS_FIND_FIRST_CLICK,
HS_FIND_SECOND_CLICK,
HS_ADVANCE_98,
HS_STOP_SETTLE,
HS_REVERSE_TO_CLICK,
HS_DONE
1551
HomeSubstate hs = HS_START;
long c1 =8, ¢2 =8, c3 = 8;
long counts98 = 8;
const uint32_t HOME_DELAY_TICKS = msToTicks(25688) ;

const uint32_t HOMING_TIMEOUT_TICKS = msToTicks(12888);
const uint32_t SETTLE_TICKS = msToTicks(188);

uint3Z2_t home_t8@ = 8;
uint32_t hs_te = 8;

void homing_step() {
uint32_t t = nowTick():

switch (hs) {

case HS_START:
ledsOn();
motorStop();
home_t8 = 8;
hs_t8 = 8;
if (checkBtnPressed()) {
hs = HS_DELAY;

Serial.println("[HOMING] Start homing sequence.");

}

break;

case HS_DELAY:
if (home_t®@ == @) home_t@ = t;
ledsBlinkFast();
motorStop();
if (t - home_t8 »= HOME_DELAY_TICKS) {

12

hs = HS_FIND_FIRST_CLICK;

hs_té8 = t;

Serial.println(”[HOMING] Spin to first click.");
It
break;

case HS_FIND_FIRST_CLICK:
ledsBlinkFast();
motorFwd (HOMING_PWM) ;
if (checkLim3Pressed()) {
noInterrupts(); c1 = encCount; interrupts();
hs = HS_FIND_SECOND_CLICK;
hs_t8 = t;
Serial.println("[HOMING] First click. Continue to next click.");
}
if (t - hs_t® > HOMING_TIMEOUT_TICKS) {
motorStop() ;
Serial.println(“[HOMING FAIL] Timeout at first click.");
hs = HS_START;
}

break;

case HS_FIND_SECOND_CLICK:
ledsBlinkFast();
motorFwd (HOMING_PWM) ;
if (checkLim3Pressed()) {
noInterrupts(); ¢2 = encCount; interrupts(),;
counts98 = degToCounts(98.6f);
hs = HS_ADVANCE_98;
hs_t8 = t;
Serial.println(“[HOMING] Second click. Advance +98.°);
}
if (t - hs_t8 > HOMING_TIMEQUT_TICKS) {
motorStop();
Serial.println("[HOMING FAIL] Timeout at second click.");
hs = HS_START;
}

break;

case HS_ADVANCE_98:
ledsBlinkFast();
motorFwd (HOMING_PWNM) ;
if (labs({encCount - ¢2) == counts9@) {
motorStop():
hs = HS_STOP_SETTLE;
hs_t@ = t;
Serial.println("[HOMING] +98 reached. Reverse to click.");
}
if (t - hs_t® > HOMING_TIMEOUT_TICKS) {
motorStop() ;
Serial.println("[HOMING FAIL] Timeout during +98.7);
hs = HS_START;
}
break

case HS_STOP_SETTLE:
ledsBlinkFast();

13

motorStop();

if (t - hs_t@ »= SETTLE_TICKS) {
hs = HS_REVERSE_TO_CLICK;
hs_te = t:

}

break ;

case HS_REVERSE_TO_CLICK:
ledsBlinkFast();
motorRev {HOMING_PWM) ;
if (checkLim3Pressed()) {
nolnterrupts(); c3 = encCount; interrupts();

long cB = lroundf(8.5F * ((float)c2 + (float)c3));
noInterrupts(); encCount -= c@; interrupts();

motorStop():
hs = HS_DONE;
Serial.println(”[HOMING] Zero set. Done.");
}
if (t - hs_t® > HOMING_TIMEOUT_TICKS) {
motorStop();
Serial.println(” [HOMING FAIL] Timeout reversing to click."):
hs = HS_START;
r

break ;

case HS_DONE:
motorStop();
break ;

I === BEATAR ====ceca=eee====
enum State {
ST_HOMING,
ST_START_SWEEP_CLAMP,
ST_WAIT_TAKEOFF_TO_IDLE,
ST_RETRACTING,
ST_IDLE,
ST_READY,
ST_DEPLOYINMG,
ST_DEPLOY_DELAY_LOCK,
ST_LOCKING,
ST_LANDED
| ¥
State st = ST_HOMING;

const uint32_t DEPLOY_DELAY_TICKS = msToTicks(188);
uint32_t deployDelay_t8 = @;

4 sem=ssmssses===o Setupl—————-————-
void setup() {
Serial.begin(115288) ;

pinMode (PIN_MOTOR_IN1, OUTPUT);
pinMode (PIN_MOTOR_INZ, OUTPUT);

14

pinMode(PIN_MOTOR_EMA, OUTPUT);
motorStop();

pinMode(PIN_ENC_A, INPUT_PULLUR) ;
pinMode(PIN_ENC_B, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(PIN_ENC_A), isr_encA, CHANGE);
attachInterrupt(digitalPinToInterrupt(PIN_ENC_B), isr_encB, CHANGE);

pinMode(PIN_BTN, INPUT);
attachInterrupt(digitalPinToInterrupt(PIN_BTN), isr_btn, RISING);

pinMode(PIN_LIM3, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(PIN_LIM3), isr_lim3, FALLING);

pinMode(PIN_LED_GREEN, OUTPUT);
ledsOff();

LidarSerial.begin(LIDAR_BAUD, SERIAL_8N1, PIN_LIDAR_RX, PIN_LIDAR_TX);
resetController();

esp_timer_create_args_t args = {};
args.callback = Rctrl_timer_ch;
args.dispatch_method = ESP_TIMER_TASK;
args.name = “"ctrlTick”;

if (esp_timer_create(Rargs, &ctrlTimer) != ESP_OK) {
Serial.println(”[TIMER FAIL] esp_timer_create failed");
} else {
if (esp_timer_start_periodic(ctrlTimer, CTRL_PERIOD_US) !'= ESP_OK) {
Serial.println(“[TIMER FAIL] esp_timer_start_periodic failed");
}

Serial.println("Landing Gear: homing + tick-driven cascaded controller.®);

/I =emecccscenenen- LOGf ==eeeesssesasene
void loop() {
lidar_poll();

switch (st) {

case ST_HOMING:

homing_step() ;

if (hs == HS_DONE) {
targetDeg = 188.8f; // clamp legs inm down position
kp_scale = KP_STARTUP_SCALE; // slow sweep
resetController();
gt = ST_START_SWEEP_CLAMP;
Serial.println("[START] Sweeping to 188 clamp.");

}

break;

case ST_START_SWEEP_CLAMP:
ledsBlinkSlow() ;
if (atTargetHold()) {

15

kp_scale = 1.8f;
st = ST_WAIT_TAKEOFF_TO_IDLE;

Serial.println(”[START] Clamped at 188.
}

break ;

Waiting takeoff.");

case ST_WAIT_TAKEOFF_TO_IDLE:
ledsOn();
if (takeoffHigh) {
targetDeg = 8.8f;
kp_scale = 1.8f;
resetController();
st = ST_RETRACTING;

Serial.println("[TAKEOFF] Retracting to 8.");
}

break;

case ST_RETRACTING:

ledsOn();
if (atTargetHold()) {
st = ST_IDLE;
Serial.println{"[IDLE] Legs up at 8.");
¥
break ;

case ST_IDLE:
ledsOff();
if (nearGround) {
st = ST_READY,
Serial.println("[READY] Mear ground. Waiting button.");
}

break ;

case ST_READY:
ledsBlinkSlow() ;
if (checkBtnPressed()) {
targetDeg = 98.8f;
resetController();
st = ST_DEPLOYING;

Serial.println(”[DEPLOY] Going to 98.°);
}

break;

case ST_DEPLOYING:
ledsBlinkSlow() ;
if (atTargetHold()) {
deployDelay_t@ = nowTick();
st = ST_DEPLOY_DELAY_LOCK;
Serial.println{”[DEPLOY] At 98. Delay then lock."):
¥

break;

case ST_DEPLOY_DELAY_LOCK:
ledsBlinkSlow();
if (nowTick() - deployDelay_t8 == DEPLOY_DELAY_TICKS) {
targetDeg = 188.8f;
resetController();

16

st

= ST_LOCKING;

Serial.println(“[LOCK] Locking to 188.°);

}

break;

case ST_LOCKING:
ledsBlinkSlow();
if (atTargetHold()) {

st

= ST_LANDED;

Serial.println("[LANDED] Locked at 188. Waiting takeoff.");

}

break;

case ST_LANDED:
ledsOn() ;
if (takeoffHigh) {
targetDeg = 8.8f;
resetController();

st

= ST_RETRACTING;

Serial.println(”[TAKEOFF] Retracting to 8.");

}

break;

/[controller always on after homing

static uint32_t ticksServiced = B;

uint3z_t

tNow = nowTick();

if (st !'= ST_HOMING) {
while (ticksServiced '= tNow) {
ticksServiced++;
controlStep_cascaded() ;

}
} else {

ticksServiced = tNow;

}

/Il status print
const uint32_t PRINT_EVERY_TICKS = msToTicks(588);
static uint32_t tlLast = 8;

if (tNow

tLast =

- tLast > PRINT_EVERY_TICKS) {
TNow;

float pos_raw = countsToDeg(encCount);

Serial.

print(“state=");

switch(st){

case
case
case
case
case
case
case
case
case
case

ST_HOMING: Serial.print(“HOMING"); break;

ST_START_SWEEP_CLAMP: Serial.print(“START_SWEEP_CLAMP"); break;
ST_WAIT_TAKEOFF_TO_IDLE: Serial.print("WAILT_TAKEOFF_TO_IDLE"); break;
ST_RETRACTING: Serial.print({"RETRACTING"); break;

ST_IDLE: Serial.print("IDLE"); break;

ST_READY: Serial.print("READY"); break;

ST_DEPLOYING: Serial.print("DEPLOYING"), break;

ST_DEPLOY_DELAY_LOCK: Serial.print(“DEPLOY_DELAY_LOCK"); break;
ST_LOCKING: Serial.print(“LOCKING"); break;

ST_LANDED: Serial.print(“LANDED"); break;

17

18

}

Serial.print(" | counts=");
Serial.print(encCount);
Serial.print(" | pos=");
Serial.print(pos_raw,1);
Serial.print("" tgt=");
Serial.print(targetDeg,1);
Serial.print("" | near=");
Serial.print{nearGround) ;
Serial.print(” | high=");
Serial.print(takeoffHigh);
Serial.print(" | dist=");
Serial.print(tf_dist);
Serial.println(“cm”);

	Circuit and State Transition Diagrams
	Reflection
	Appendix A: Bill of Materials
	Appendix B: CAD
	
	Appendix C: Code
	

